

Françoise Combes Observatoire de Paris

24 November 2016

SDP.81, at z=3.042

Large Baselines \rightarrow 30mas resolution Corresponds to 50-100pc on the z=3 galaxy (gain x 3-4 due to lensing)

Mass within 1.5kpc, 3 10¹⁰ Mo, almost entirely gas! 5 different groups have published on this object! >12 papers *Mol clumps Hatsukade et al 2015, dark structures Hezaveh et al*²2016 ALMA Partnership 2015

Black hole in the lens (z=0.3)?

The remote galaxy is composed of tens of <100pc SF clumps, in a 2kpc disk

Ratio between the central image, and the others Scent/Stot

ALMA high-z searches

Grey-scale NIR from HST, VLT, SOAR Vieira et al 2013 (23/26 detected) 10 z > 4Red=ALMA 870 µm contours, 2min, 0.5" ALMA-obtained spectro redshift

Galaxies during the EoR

CII line in LBG galaxies at z=6.8-7.1, with ALMA SFR = 5-15 Mo/yr *Maiolino et al 2015*

CII Contours Offset from the optical Lyα/UV by 4kpc Feedback? No FIR dust Low Z?

See also Pentericci et al 2016 4 CII detections in the EoR

6

Deep fields: HUDF

In HUDF 1.3mm, **16 sources detected** (65 expected) $\langle z \rangle = 2.15$ Only one z>3.5 The stellar mass is the main criterion M*>2 10¹⁰Mo $\sigma \sim 35\mu$ Jy, 0.7" MS: SFR \sim M*, sSFR = 2.2Gyr⁻¹ SFR (obs/no-obs)=200

HUDF Dunlop et al 2016 Region ~ HUDF (20h)

Deep fields: HUDF ASPECS

CII+dust 6 < z < 8, 14 CII candidates, more than 60% spurious, 2 blind Dust only on the stack, SFR = 3Mo/yr

 $1 \text{mm } \sigma \sim 13 \mu \text{Jy} < z > = 1.6$, Mgas lower than CO-derived by a factor 2

Aravena et al 2016, 1/6th of the HUDF (30h)

35^S

10 sources detected in some CO lines ~less than 5 spurious

CO lines in HUDF-ASPECS

1arcmin², 1302 galaxies, 56 with spectro-z, 11 with $L_{IR} > 10^{11}Lo$ 7 « detected » at different levels CO excitation less than in starbursts, \rightarrow MS, tdep ~1 Gyr

MUSE in the HUDF-ASPECS

Several galaxies confusing along the los

Lya Luminosity function HUDFS

Molecular outflow in Mrk 231

AGN and also nuclear Starburst, 10⁷-10⁸Mo Outflow 700Mo/yr

Ferruglio et al 2010

Fueling in low-luminosity AGN

NGC 1433: Sy 2 barred spiral, the « Lord of the Rings »

The smallest molecular AGN-driven outflow

CO(3-2) with ALMA (Cycle 0)

Beam = 0.5'' = 24pc

Flow of 60pc size

Combes et al 13

Off-center AGN and outflow in N1068

NGC 1068: detection of the torus (7pc)

Garcia-Burillo et al (2016)

Radio mode: molecular flow IC5063

Morganti et al 2015

17

Some of the gas optically thin in the flow?

ALMA: cooling flows

Abell 2597 Central Galaxy with radio jets and optical filaments

Tremblay et al 2016

Centaurus A with MUSE

Discovery of arcs perpendicular to the filament Halpha, [NII], [OIII] and [SII] lines clumpy structures inside the diffuse medium along the radio-jet

→ Neutral material swept by a backflow of the AGN jet outburst and ionised through slow shocks

Hamer, Salome, Combes, Salome, 2014

Halpha MUSE: ram-pressure

Outer parts stripped first: Now only the center Transition from laminar to turbulent > 6.5 Myr

MUSE discovery of « cold » atomic gas illuminated by quasars

Blind survey for giant Ly- α nebulae around **17 bright RQQ** at 3<z<4 All QSO have 100-320kpc Ly- α nebulae

Borisova et al 2016

→ Ubiquitous, like the Slug nebula, Fluorescence of gas up to 500kpc at z=2, 10¹²Mo filament Cantalupo et al 2014

Also absorption lines in front of he QSO → 60% filling factor of "cold" dense gas

Extended Lya haloes around galaxies

Galaxies between 3 < z < 6 Ly α more extended than UV continuum

Extension of a few kpc

Wisotzki et al 2016

- → HUDFS: ALMA & MUSE, still small numbers, but already surprises: most of the SFR is not dust-obscured low CO excitatio
- → High-z galaxies, evolution of cosmic star formation, Gas mass fraction increases by ~10, tdep ~ $(1+z)^{-1}$
- → AGN feedback, negative and positive, molecular outflows (ALMA)
- → Ram-pressure tails, polar rings with MUSE
- → Illumination of cold gas in filaments with MUSE