Dark Matter at galactic scales

Olivier Bienaymé, Benoit Famaey & Rodrigo Ibata Observatoire astronomique de Strasbourg

Galactic scales: a challenge for cosmology and a benchmark for DM direct and indirect detection

- Local dark matter density? (important for DM direct detection limits)
- Core-cusp problem? (important for DM indirect detection)
- Radial Acceleration Relation (RAR)?
- Planes of satellites?
- Missing dwarfs (especially in the field)?
- Shape of the DM halo in the MW and external galaxies?

- ...

Bienaymé, Famaey, et al. (2014): Weighing the local dark matter with **RAVE** red clump stars

=> ρ_{DM} = 0.014 M_{sun}/pc^3 (>0.008 M_{sun}/pc^3 used for DM detection lim)

Lavalle & Magni (2014): effect of local DM density and DM velocity distribution (including local escape speed) on DM detection limits

Effects of non-axisymmetry and non-equilibrium??

Williams et al. (2013): The wobbly Galaxy: kinematics north and south with **RAVE** red clump giants

=> Breathing mode locally

Slater et al. (2014): The Complex Structure of Stars in the Outer Galactic Disk as revealed by **Pan-STARRS1**

⇒North-South asymmetries (bending modes) in the outer MW disk

Effects of non-axisymmetry and non-equilibrium??

- Monari, Famaey & Siebert (2016): Modelling the Galactic disc: perturbed distribution functions in the presence of spiral arms
- ⇒ Breathing modes generated by spirals and the bar
- ⇒ Include this in future determinations of DM density
- Fouvry, Binney & Pichon (2015): Selfgravity, resonances, and orbital diffusion in stellar disks
- ⇒ Effects of transient spirals on the evolution of the distribution function (development of ridges in the space of actions)

MW bar parameters?

Wegg C., Gerhard O., Portail M., 2015, MNRAS, 450, 4050

Millions of RC stars from VVV survey + 2MASS+ UKIDDS + GLIMPSE => long flat (h_z <50 pc) extension of the bar out to 5 kpc from the center (I>30°)

+Fit to los velocities of BRAVA (central 10° in long.) & ARGOS (-30°<I<30°)

 $\Rightarrow \Omega_b = 40 \text{ km/s/kpc} \sim 1.35 \Omega_0 \text{ (Portail et al. 2016)}$ $\Rightarrow \text{Corotation at 6 kpc! (and OLR beyond 10 kpc)}$

Local signature of the OLR of the bar?

Monari, Kawata, Hunt & Famaey (2016): Tracing the Hercules stream with Gaia and LAMOST: new evidence for a fast bar in the Milky Way

One of the first Galactic dynamics results of Gaia!!

$\Rightarrow \Omega_{\rm b} > 1.8 \ \Omega_0 (\sim 55 \ \rm km/s/kpc)$

⇒ Long flat extension of the bar = loosely wound spiral?

WEAVE as a complement to Gaia

Survey characteristics

IMWD survey	Essential
20°<1<90°	210 los
b <5°	5 pointings
90° <l<135°< th=""><th>75 los</th></l<135°<>	75 los
b <5°	1 pointing
Estimated number of stars	$1.1 x 10^{6}$

OMWD survey	Essential
135° <l<225°< th=""><th>151 los in LR mode</th></l<225°<>	151 los in LR mode
b <5°	1 pointing
135° <l<225°< th=""><th>120 los in HR mode</th></l<225°<>	120 los in HR mode
5°< b <10°	1 pointing
Estimated number of stars	3x10 ⁵

Core-Cusp problem from galaxy rotation curves

CDM halo without baryon feedback : $\ln \rho(r) / \rho_{-2} = -2 / \alpha [(r / r_{-2})^{\alpha} - 1]$

Slope dlnp/dlnr∝ -1.4 at 1 kpc to -0.8 at 100 pc

Chemin et al. (2011) find best fits with innermost slope of ~ -0.1 (=> -0.5 for cuspiest)

=> DM CORES!
=> FEEDBACK??

Core-Cusp problem in the Milky Way

Binney & Piffl (2015): rule out an adiabtically compressed NFW!

Cole & Binney (2016): if adopting a cored halo with a 2 kpc core, everything can be fitted

Important for DM indirect detection: claims of an excess emission around 2 Gev from the Galactic center seen by **Fermi**.

The excess was argued to be a possible DM signature because compatible with a NFW cusp, even a bit steeper...

This is actually an argument against this being a indirect DM detection!

More generally: Radial acceleration relation (RAR)

Modified Gravity?

Important test with Gaia: see Bienaymé, Famaey, et al. 2009

Dwarf galaxies: new discoveries

Happy hunting grounds around the LMC:

Koposov et al. (2015) Martin et al. (2015, 2016)

Koposov et al. (2015)

Dwarf galaxies: planes of satellites

Most probable solution: infalling group. Cosmological implications unclear, but such spatial-kinematic are only found as chance alignments. **Gaia** will tell us whether this is so in reality.

Missing dwarf galaxies in the field

Trujillo-Gomez et al. (2016): feedback does not substantially affect the Vmax distribution. Dwarfs still missing!

Stellar streams – new detections

Stellar streams and the shape of DM haloes

The low surface brightness universe: shells as DM probes

MATLAS Duc et al. 2015 Sanderson & Helmi 2013

The next few years will be very exciting!

MSE